Low-Dimensional Thermoelectricity

نویسنده

  • J. P. Heremans
چکیده

Thermoelectric materials are used as solid-state heat pumps and as power generators. The low efficiency of devices based on conventional bulk thermoelectric materials confines their applications to niches in which their advantages in compactness and controllability outweigh that drawback. Recent developments in nanotechnologies have led to the development of thermoelectric nano-materials with double the efficiency of the best bulk materials, opening several new classes of applications for thermoelectric energy conversion technology. We review here first the physical mechanisms that result in the superior thermoelectric performance of low-dimensional solids, compared to bulk thermoelectric materials: they are a reduction of the lattice thermal conductivity, and an increase in the Seebeck coefficient S for a given carrier density. The second part of this review summarizes experimental results obtained on macroscopic arrays of bismuth, antimony, and zinc nanowires with diameters ranging from 200 to 7 nm. We show how size-quantization effects greatly increase S for a given carrier concentration, as long as the diameter of the nanowires remains above 9 nm, below which localization effects start dominating. In a third part, we give data on PbTe nanocomposites, particularly bulk samples containing 30 nm diameter Pb inclusions. These inclusions affect the electron scattering in such a way as to again increase the Seebeck coefficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoelectricity in atom-sized junctions at room temperatures

Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junct...

متن کامل

Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale

Thermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a lo...

متن کامل

Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in...

متن کامل

New Directions for Low-Dimensional Thermoelectric Materials

Providing a sustainable supply of energy to the world’s population will become a major societal problem for the 21st century as fossil fuel supplies decrease and world demand increases. Thermoelectric phenomena, which involve the conversion between thermal and electrical energy, and provide a method for heating and cooling materials, are expected to play an increasingly important role in meetin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005